National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Design and synthesis of surface architectures on fluorescent nanodiamonds
Havlík, Jan
anks to their unique properties and high biocompatibilities, fluorescent nanodiamonds are promising representatives of modern carbon nanomaterials with a broad range of applications. Nevertheless, their wider use is limited because of weak fluorescence intensity and low colloidal stability in the biological environment. e optimization of treatment procedures and development of new suitable surface designs is therefore critically needed. In this study, several key steps for fluorescent nanodiamond treatment have been optimized, leading to both a substantial increase in fluorescence intensity and to significantly lower surface damage caused by graphitization. Further, a new high-throughput irradiation technique was developed. e influence of surface chemistry on the fluorescence parameters was studied using partial fluorination of the functional groups on the nanodiamond surface. A novel method which significantly affects the interaction of nanodiamonds with biological systems by increasing of the homogeneity and circularity was developed. e potential of nanodiamonds for future medical and biological research was demonstrated on particles with complex surface architectures that enabled targeting and therapy of tumor cells. Moreover, a strong and highly selective affinity of fibroblast growth factors to diamond...
Novel approaches to chemical modification of diamond surface
Bartoň, Jan ; Cígler, Petr (advisor) ; Řezanka, Pavel (referee) ; Stehlík, Štěpán (referee)
1 Abstract Diamond is a unique material for its physical and chemical stability. However, many advance applications rely on surface functionalisation. Here, two types of diamond were modified on the surface - thin layer of chemical vapor deposition (CVD) and nanodiamond particles (NDs) high pressure and high temperature (HPHT). The aim of CVD surface modification was to prepare photosensitised, conductive, diamond electrodes for dye sensitized solar cells (DSSC). For this purpose, a thin diamond layer doped with boron was deposited on the silicon wafer. Boron doping provided p-type (semi)conductivity to diamonds. The surface of the diamond was hydrogenated with H-plasma, and a short carbon linker with a protected amino group was UV-photografted to the surface. In another study, a photoconverting dye (P1) was covalently attached to the amine-linker. Furthermore, a dye designed based on donor-π-acceptor (D-π-A) concepts was attached to the surface. Finally, a systematic study was done for differently conductive diamond layer and the underlying silicon wafer These experiments gradually lead to the highest ever reported photocurrents of 6.6 µA cm2 for a flat photosensitised boron-doped-diamond (BDD) electrode. Monomolecular layer surface functionalizations on CVD diamond are difficult to detect or even quantify...
Design and synthesis of surface architectures on fluorescent nanodiamonds
Havlík, Jan
anks to their unique properties and high biocompatibilities, fluorescent nanodiamonds are promising representatives of modern carbon nanomaterials with a broad range of applications. Nevertheless, their wider use is limited because of weak fluorescence intensity and low colloidal stability in the biological environment. e optimization of treatment procedures and development of new suitable surface designs is therefore critically needed. In this study, several key steps for fluorescent nanodiamond treatment have been optimized, leading to both a substantial increase in fluorescence intensity and to significantly lower surface damage caused by graphitization. Further, a new high-throughput irradiation technique was developed. e influence of surface chemistry on the fluorescence parameters was studied using partial fluorination of the functional groups on the nanodiamond surface. A novel method which significantly affects the interaction of nanodiamonds with biological systems by increasing of the homogeneity and circularity was developed. e potential of nanodiamonds for future medical and biological research was demonstrated on particles with complex surface architectures that enabled targeting and therapy of tumor cells. Moreover, a strong and highly selective affinity of fibroblast growth factors to diamond...
Design and synthesis of surface architectures on fluorescent nanodiamonds
Havlík, Jan ; Kotek, Jan (advisor) ; Lang, Kamil (referee) ; Štěpánek, František (referee)
anks to their unique properties and high biocompatibilities, fluorescent nanodiamonds are promising representatives of modern carbon nanomaterials with a broad range of applications. Nevertheless, their wider use is limited because of weak fluorescence intensity and low colloidal stability in the biological environment. e optimization of treatment procedures and development of new suitable surface designs is therefore critically needed. In this study, several key steps for fluorescent nanodiamond treatment have been optimized, leading to both a substantial increase in fluorescence intensity and to significantly lower surface damage caused by graphitization. Further, a new high-throughput irradiation technique was developed. e influence of surface chemistry on the fluorescence parameters was studied using partial fluorination of the functional groups on the nanodiamond surface. A novel method which significantly affects the interaction of nanodiamonds with biological systems by increasing of the homogeneity and circularity was developed. e potential of nanodiamonds for future medical and biological research was demonstrated on particles with complex surface architectures that enabled targeting and therapy of tumor cells. Moreover, a strong and highly selective affinity of fibroblast growth factors to diamond...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.